• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

乔俊飞 (乔俊飞.) (学者:乔俊飞) | 段滈杉 (段滈杉.) | 蒙西 (蒙西.) | 汤健 (汤健.) (学者:汤健)

收录:

incoPat

摘要:

一种基于动态模块化神经网络的MSWI过程NOx排放预测方法属于智能建模领域。首先,对输入变量,并进行平滑处理和归一化;然后,设计了一种基于主成分分析PCA的工况特征提取方法,实现了复杂工况的动态划分,从而将待处理的预测任务分解为不同工况下的子任务;此外,针对不同的子任务,构建基于长短期记忆(Long short‑term memory,LSTM)神经网络的子模型,实现对各工况下NOx排放的精准预测;最后,采用协同合作策略对子模型的输出进行整合,进一步提高了预测模型的精度。基于工业基准测试和实际运行数据评估了基于DMNN的预测模型的有效性,本发明有效解决了受传感器限制,MSWI过程NOx排放浓度难以准确预测的问题。

关键词:

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

专利基本信息 :

专利类型: 发明申请

申请(专利)号: CN202210994681.2

申请日期: 2022-08-18

公开(公告)日: 2022-11-01

公开(公告)号: CN115271245A

申请(专利权): 北京工业大学

法律状态: 实质审查

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:254/4781451
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司