• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | Lu, Wei (Lu, Wei.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

EI Scopus PKU CSCD

摘要:

To improve the diversity and convergence of optimal solutions in multiobjective particle swarm optimization (MOPSO) algorithm, a multiobjective particle swarm optimization algorithm, based on the diversity information and convergence degree, named dicdMOPSO, is developed in this paper.Firstly, a global optimal solution selection mechanism, based on the distribution of optimal solutions in the knowledge base with the diversity information of non-dominated solutions, is introduced to balance the evolutionary process of population to improve the diversity and convergence of non-dominated solutions.Then, to enhance global exploration and local exploitation abilities of particles, a flight parameter adjustment mechanism is proposed to obtain the particles with better diversity and convergence by using the population diversity information.Finally, the experiment results demonstrate that, compared with other multiobjective algorithms, this proposed dicdMOPSO algorithm can not only obtain the optimal solutions with better diversity, but also be faster to catch the Pareto front. © 2018, Chinese Institute of Electronics. All right reserved.

关键词:

Optimal systems Multiobjective optimization Genetic algorithms Knowledge based systems Particle swarm optimization (PSO)

作者机构:

  • [ 1 ] [Han, Hong-Gui]Department of Information, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Han, Hong-Gui]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Lu, Wei]Department of Information, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Lu, Wei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Qiao, Jun-Fei]Department of Information, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Qiao, Jun-Fei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Acta Electronica Sinica

ISSN: 0372-2112

年份: 2018

期: 2

卷: 46

页码: 315-324

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:1497/3874355
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司