• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Lei (Wang, Lei.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Li, Xiao-Li (Li, Xiao-Li.) (学者:李晓理)

收录:

EI Scopus PKU CSCD

摘要:

To avoid singular problem and improve the performance of neural network, a weight initialization method for echo state network(WIESN) is proposed. With Cauchy inequality and linear algebra, the range of optimal initial weights, which is related to input dimension, reservoir dimension, input variables and reservoir state, is determined. The proposed method ensures that the outputs of neurons are in the active region. Simulation results show that the accuracy and training time of the proposed method is better than learning with random initialization. In addition, the time for weight initialization process is negligible comparing with the training process. © 2018, Editorial Office of Control and Decision. All right reserved.

关键词:

Control engineering Computer simulation Linear algebra

作者机构:

  • [ 1 ] [Wang, Lei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Wang, Lei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Qiao, Jun-Fei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Qiao, Jun-Fei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Li, Xiao-Li]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Li, Xiao-Li]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

  • [wang, lei]beijing key laboratory of computational intelligence and intelligent system, beijing; 100124, china;;[wang, lei]faculty of information technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Control and Decision

ISSN: 1001-0920

年份: 2018

期: 2

卷: 33

页码: 356-360

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:358/3901444
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司