• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

阮晓钢 (阮晓钢.) | 王飞 (王飞.) | 黄静 (黄静.) | 朱晓庆 (朱晓庆.) | 周静 (周静.) | 张晶晶 (张晶晶.) | 董鹏飞 (董鹏飞.)

收录:

incoPat

摘要:

本发明公开了基于特征提取与降维神经网络的视觉SLAM闭环检测方法,本发明采用卷积神经网络模型,通过在大量数据集上进行训练,从而使网络具有特征学习的能力。这样将图片之间的相似度比较转换成特征向量之间的相似度对比。为了进一步提高检测的速度,在卷积神经网络的最后加上一层自编码器网络,用来对提取的图像特征进行降维。卷积神经网络具有平移不变性,尺度不变性等多种特性,可以有效克服传统人工特征对环境变化敏感的缺点,并且具有更快的特征提取速度。该方法可解决传统视觉SLAM闭环检测方法存在的特征提取时间短,受环境变化和光照变化影响大的缺点,可以有效提高闭环检测的准确率和召回率,对于构建全局一致的环境地图具有重要作用。

关键词:

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

专利基本信息 :

专利类型: 发明授权

申请(专利)号: CN201811231732.6

申请日期: 2018-10-22

公开(公告)日: 2022-05-17

公开(公告)号: CN109443382B

申请(专利权): 北京工业大学

法律状态: 授权

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:327/4778401
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司