收录:
摘要:
一种基于超像素深度网络的室内场景语义分割方法,能够缓解像素作为深度网络计算单元带来的图像语义分割边界不清晰以及计算量大的问题,同时打破现有深度网络方法无法接受无序的超像素集合作为输入的局限。该方法包括:(1)对RGB颜色图像使用简单线性迭代聚类分割算法SLIC得到超像素集合;(2)计算每一个超像素的最小包围矩形;(3)基于超像素深度网络RCN提取图像的颜色特征与深度特征;(4)用每一个超像素的最小包围矩形,在颜色与深度的多层次特征图上进行裁剪和重塑操作,得到每一个超像素颜色多层次特征表示与深度多层次特征表示;(5)融合超像素颜色多层次特征与深度多层次特征得到超像素特征,对超像素进行分类。
关键词:
通讯作者信息:
电子邮件地址: