• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

冀俊忠 (冀俊忠.) (学者:冀俊忠) | 邹爱笑 (邹爱笑.)

收录:

incoPat

摘要:

一种基于自动变分自编码器的脑效应连接网络学习方法,属于深度学习算法领域。首先对模型进行参数初始化,然后利用自动变分自编码器的编码网络从各脑区的fMRI数据中学习潜变量,并通过解码网络从潜变量中获得生成的fMRI数据。最后,当生成的fMRI数据和真实的fMRI数据高度相似时,模型在迭代训练的过程中可以学习到一个最优的脑效应连接网络。本发明利用融合了比例‑积分控制器的变分自编码器自适应地调节模型的参数,在端到端的训练过程中自动、准确地学习了人脑的效应连接网络。因此,本发明具有参数少、准确性高,泛化能力强等优势,可以有效地缓解现有的脑效应连接网络深度学习方法中人工调参困难的问题。

关键词:

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

专利基本信息 :

专利类型: 发明申请

申请(专利)号: CN202111356966.5

申请日期: 2021-11-16

公开(公告)日: 2022-03-22

公开(公告)号: CN114219069A

申请(专利权): 北京工业大学

法律状态: 实质审查

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:371/5038021
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司