• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Honggui (Han, Honggui.) (学者:韩红桂) | Liu, Zheng (Liu, Zheng.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI PKU CSCD

摘要:

An intelligent controller, based on interval type-2 fuzzy neural networks (IT2FNN) was proposed for controlling dissolved oxygen (DO) concentration in municipal wastewater treatment processes. First, IT2FNN was applied to design a DO concentration controller. Second, an adaptive learning algorithm was used to online adjust controller parameters such that self-adaptability of the IT2FNN-based DO controller could be improved. Finally, IT2FNN-based DO controller was tested in the benchmark simulation model no. 2 (BSM2). The experimental results demonstrate that the controller is able to accurately monitor DO concentration in the fifth unit and maintain excellent control. © All Right Reserved.

关键词:

Biochemical oxygen demand Controllers Dissolution Dissolved oxygen Fuzzy inference Fuzzy logic Fuzzy neural networks Learning algorithms Neural networks Process control Reclamation Wastewater treatment

作者机构:

  • [ 1 ] [Han, Honggui]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Han, Honggui]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Liu, Zheng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Liu, Zheng]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Qiao, Junfei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Qiao, Junfei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

  • 韩红桂

    [han, honggui]beijing key laboratory of computational intelligence and intelligent system, beijing; 100124, china;;[han, honggui]faculty of information technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

CIESC Journal

ISSN: 0438-1157

年份: 2018

期: 3

卷: 69

页码: 1182-1190

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:107/3608047
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司