• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Li (Zhang, Li.) | Liu, Han (Liu, Han.) | Wang, Yifei (Wang, Yifei.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻)

收录:

EI Scopus SCIE PubMed

摘要:

The variations in the structural components of dissolved organic matter (DOM) during coal liquefaction wastewater (CLW) treatment are still unclear at present, limiting the further improvement and application of CLW treatment processes. In this study, the changes of DOM composition during air flotation, catalytic oxidation, biofiltration, ozonation, anoxic/oxic (A/O), and membrane bioreactor (MBR) which were applied in the full-scale CLW treatment, were investigated by three-dimensional excitation-emission matrix fluorescence and ultraviolet-visible spectroscopy. The dissolved organic carbon and chemical oxygen demand of the raw CLW reached 1965.2 mg/L and 5310.0 mg/L, respectively, with humic acid-like substances being as the dominant component (63.1%), and protein-like substances contributing a small amount (5.3%). Air flotation could treat humic acid-like substances more effectively. Catalytic oxidation and ozonation efficiently removed macromolecular aromatic substances with aliphatic chain substituents, resulting in the notable enhancement of the biodegradability of the organics. The DOM removal efficiency of biofiltration and A/O reached 86.0% and 92.3%, respectively, and simultaneously complex macromolecular substances with a high degree of aromaticity were formed. This study could provide a theoretical basis for optimizing the technical parameters and further improving the treatment efficiency of CLW. (C) 2019 Elsevier B.V. All rights reserved.

关键词:

Dissolved organic matter removal Coal liquefaction wastewater treatment Ultraviolet-visible spectroscopy Three-dimensional excitation-emission matrix fluorescence

作者机构:

  • [ 1 ] [Zhang, Li]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Han]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Yifei]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 4 ] [Peng, Yongzhen]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhang, Li]Beijing Univ Technol, Key Lab Beijing Water Qual Sci & Water Environm R, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

SCIENCE OF THE TOTAL ENVIRONMENT

ISSN: 0048-9697

年份: 2020

卷: 704

9 . 8 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:138

被引次数:

WoS核心集被引频次: 23

SCOPUS被引频次: 24

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1118/4286212
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司