收录:
摘要:
本发明公开了一种电子元器件X射线检查缺陷自动识别方法,该方法对X射线图像进行预处理;人工半自动或自动对样本进行标注,根据电子元器件的封装和缺陷形式,将待检测的电子元器件的缺陷类型分为空洞类缺陷、一致性缺陷和角度缺陷三大类。利用基于卷积神经网络的语义分割方法实现对四类空洞缺陷的检测。通过大量的样本对卷积神经网络进行训练,实现对各类空洞缺陷的精确分割,极大提高了缺陷自动识别效率。同时,通过灰度投影法对芯片焊接区及密封区等进行检测,根据相应的判别准则对其合格性进行判别。解决了以往无法进行自动计算和单纯靠人工进行判别的问题,以及混合集成电路中的基板与管壳焊接界面空洞的干扰问题。
关键词:
通讯作者信息:
电子邮件地址: