• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

何坚 (何坚.) | 刘炎 (刘炎.)

收录:

incoPat

摘要:

基于深度神经网络和注意力机制的手势识别方法属于电子信息领域。首先,本发明设计在双流算法中引入ECA有效通道注意力增强双流算法对手势关键帧的关注度,并利用双流算法中的空间卷积网络和时间卷积网络分别提取动态手势中的空间和时序特征;其次,通过ECA在空间流中选取最高关注度的手势帧,利用单发多框检测器技术提取相应手部姿态特征;最后,将手部姿态特征与双流中提取的人体姿态特征、手势时序特征融合后分类识别手势。本方法在Chalearn2013多模态手势数据集上进行了验证,准确率为66.23%,相比之前在该数据集上仅使用RGB信息进行双流识别的方法获得了更好的手势识别效果。

关键词:

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

专利基本信息 :

专利类型: 发明申请

申请(专利)号: CN202110518115.X

申请日期: 2021-05-12

公开(公告)日: 2021-09-10

公开(公告)号: CN113378641A

申请(专利权): 北京工业大学

法律状态: 实质审查

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:194/4780203
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司