• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

乔俊飞 (乔俊飞.) (学者:乔俊飞) | 董敬娇 (董敬娇.) | 李文静 (李文静.)

收录:

incoPat

摘要:

本发明公开了一种基于DE算法的IRFM‑CMNN出水BOD浓度预测方法,针对当前污水处理过程中出水BOD与各个污水出水指标之间都有相互影响,导致出水BOD具有较强的非线性等特征,难以准确实时测量的问题,本发明基于城市污水处理生化反应特性,设计一种基于DE算法的交互递归模糊隶属度小脑模型神经网络,用于预测污水处理出水BOD关键水质参数的浓度,解决了污水处理出水BOD难以精确测量的问题;结果表明该交互递归模糊隶属度小脑模型神经网络可以快速准确地实现对污水处理出水BOD浓度的准确测量,根据准确的预测结果有针对性地调整污水处理系统的运行参数,保障了污水处理系统的平稳有效运行,提高了污水处理厂处理不合格水的效率。

关键词:

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

专利基本信息 :

专利类型: 发明申请

申请(专利)号: CN202110338019.7

申请日期: 2021-03-30

公开(公告)日: 2021-06-18

公开(公告)号: CN112989704A

申请(专利权): 北京工业大学

法律状态: 实质审查

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:553/5041666
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司