• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Yongping (Du, Yongping.) (学者:杜永萍) | Pei, Bingbing (Pei, Bingbing.) | Zhao, Xiaozheng (Zhao, Xiaozheng.) | Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠)

收录:

Scopus SCIE PubMed

摘要:

Biomedical text mining is becoming increasingly important as the number of biomedical documents grow rapidly. Deep learning has boosted the development of biomedical text mining models. However, as deep learning models require a large amount of training data, a hierarchical attention based transfer learning model is proposed in this paper for the question answering task in biomedical field which lacks of sufficient training data. We adopt BERT (Bidirectional Encoder Representation Transformers), which has the ability to learn from large-scale unsupervised data, to enrich the semantic representation in our model. Especially, the scaled dot-product attention mechanism captures the question interaction clues for passage encoding. The domain adaptation technique of fine-tuning is used to reinforce the performance, which penalizes the deviations from the source model's parameters and remembers the knowledge of source domain. We evaluate the system performance on the open data set of BioASQTask B. The results show that our system achieves the state-of-the-art performance without any handcrafted features and outperforms the best solution for factoid questions in 2016 and 2017 BioASQ-Task B.

关键词:

BERT Biomedical question answering Scaled dot-product attention Transfer learning

作者机构:

  • [ 1 ] [Du, Yongping]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Pei, Bingbing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Zhao, Xiaozheng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

  • 杜永萍

    [Du, Yongping]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China;;[Pei, Bingbing]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

METHODS

ISSN: 1046-2023

年份: 2020

卷: 173

页码: 69-74

4 . 8 0 0

JCR@2022

ESI学科: BIOLOGY & BIOCHEMISTRY;

ESI高被引阀值:32

JCR分区:2

被引次数:

WoS核心集被引频次: 14

SCOPUS被引频次: 20

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:365/3653629
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司