收录:
摘要:
本发明公开了一种基于群智能算法和cGAN的恶意代码数据不均衡处理方法,构建恶意代码生成模型。采用群智能算法计算恶意代码的可接受最佳初始样本比例。生成各家族恶意代码,构建相对均衡的恶意代码数据集。本发明利用群智能算法获得各恶意代码家族的可接受最佳样本比例,同时引入cGAN对恶意代码不同家族的数据分布进行学习并进行样本生成,最后对不平衡数据集进行处理,构建各类样本相对均衡的恶意代码数据集,使不同种类的恶意代码在选取时达到一个理想的比例,使正负样本在训练过程中具有相同的地位,更有效的解决了数据不均衡的问题。
关键词:
通讯作者信息:
电子邮件地址: