• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang Pu (Wang Pu.) | Zhang Haili (Zhang Haili.) | Gao Xuejin (Gao Xuejin.) | Gao Huihui (Gao Huihui.)

收录:

incoPat

摘要:

一种基于批次图像化的卷积自编码故障监测方法,属于间歇过程故障监测技术领域。包括离线建模和在线监测两个步骤。离线建模步骤首先将间歇过程三维数据归一化;之后将每个批次的二维数组作为图像直接输入卷积自编码器(convolutional autoencoder,  CAE)中进行深度无监督特征学习;最后,利用一类支持向量机对CAE学到的特征构造统计量和相应的控制限。在线监测步骤将采集到的数据归一化,并进行批次填充;将归一化及填充后的批次图输入训练好的CAE中学习特征;计算在线统计量,并与离线控制限比较。相比于现有技术,避免了数据展开导致的信息丢失,无需划分阶段减少建模工作量,深层地提取过程变量的变化特征,降低间歇过程监测的误报和漏报率。

关键词:

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

专利基本信息 :

专利类型: 发明申请

申请(专利)号: WOCN20096733

申请日期: 2020-06-18

公开(公告)日: 2021-05-14

公开(公告)号: WO2021088377A1

申请(专利权): Beijing University Of Technology

法律状态: 未进入国家阶段-PCT有效期满

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:379/4954579
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司