• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Geng, Pan (Geng, Pan.) | Li, Xing (Li, Xing.) (学者:李星) | Wang, Tingkun (Wang, Tingkun.) | Fan, Jian (Fan, Jian.) | Liang, Heng (Liang, Heng.)

收录:

EI Scopus PKU CSCD

摘要:

By using the biofilm annular reactor(BAR), the characteristics of microbial growth and microbial corrosion, and control measures of shock disinfection of a new stainless steel composite pipeline in the water supply system of municipal and construction area were studied. The microbial growth on the stainless steel composite pipeline wall, corrosion rate of the pipeline caused by microorganism, and inactivation efficiency of chlorine disinfection on biofilm were also investigated. The results show that in the water supply pipe network system of municipal and construction area with residual chlorine, biofilm proliferation of stainless steel composite pipeline is obvious after 80 d of operation. During 100-110 d, the biomass reaches the peak, and both the turbidity and microbial index exceed the standard values. The biofilm of the wall has a diversity of microorganisms in it, which contains a variety of pathogens, chlorine resistant pathogens and bacteria that can cause metal corrosion, posing a potential threat to the biosafety and chemical safety of drinking water. With microorganisms in water, the corrosion current density of the stainless steel composite pipeline increases, the corrosion potential decreases and the corrosion rate increases obviously. With high mass concentration of chlorine and long sterilization time, the inactivation effect of biofilm microbes is better. When the chlorine mass concentration is 5 mg/L, iron bacteria, heterotroph and other bacteria can be completely inactivated when sterilized for 60 min. After the shock of chlorine disinfection, the biofilm on the wall peels off, and biofilm morphology is damaged. The longer the disinfection time is, the greater the degree of biofilm damage is, which can effectively control the corrosion of stainless steel composite pipeline caused by biofilm and assure water safety. © 2018, Central South University Press. All right reserved.

关键词:

Bacteria Biofilms Biohazards Chlorine Corrosion rate Disinfection Efficiency Microbial corrosion Pipeline corrosion Pipelines Potable water Stainless steel Steel corrosion Water supply Water supply systems

作者机构:

  • [ 1 ] [Geng, Pan]College of Architecture and Civil Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Li, Xing]College of Architecture and Civil Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Wang, Tingkun]Yunnan Kungang New Composite Materials Development Co. Ltd., Yunnan; 605302, China
  • [ 4 ] [Fan, Jian]Yunnan Kungang New Composite Materials Development Co. Ltd., Yunnan; 605302, China
  • [ 5 ] [Liang, Heng]School of Environment, Harbin Institute of Technology, Harbin; 150090, China

通讯作者信息:

  • 李星

    [li, xing]college of architecture and civil engineering, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Central South University (Science and Technology)

ISSN: 1672-7207

年份: 2018

期: 11

卷: 49

页码: 2663-2669

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:457/2903253
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司