• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

林岚 (林岚.) | 吴玉超 (吴玉超.) | 吴水才 (吴水才.) (学者:吴水才)

收录:

incoPat

摘要:

一种基于加权全卷积神经网络的肺实质CT图像分割方法属于医学图像处理邻域。本发明包括以下步骤:选取公开肺部数据集进行预处理,提取标注图像中的肺实质边界作为一个语义类别;基于标准全卷积神经网络框架设计改进的网络结构,以编码‑解码的标准路径结构同时包含跳跃连接、膨胀卷积和批归一化的原理,建立肺实质分割卷积神经网络的整体结构框架;采用加权损失函数层;对数据集进行划分;离线模型训练,获得模型权重参数;输入测试图像并通过网络逐层前馈由输出层输出分割结果。现有的肺实质分割方法对肺实质内的病灶区域容易出现漏分割现象,本发明通过对重要像素的强化处理可以有效提高肺实质分割中对病灶区域的正确分割。

关键词:

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

专利基本信息 :

专利类型: 发明申请

申请(专利)号: CN202010550923.X

申请日期: 2020-06-16

公开(公告)日: 2020-11-03

公开(公告)号: CN111882560A

申请(专利权): 北京工业大学

法律状态: 实质审查

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:126/4743791
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司