• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

黄志清 (黄志清.) | 贾翔 (贾翔.) | 王师凯 (王师凯.) | 张煜森 (张煜森.)

收录:

incoPat

摘要:

本发明公开了基于深度学习的端到端乐谱音符识别方法,该方法一共分为三步:(1)数据预处理:需要从MuseScore中下载对应的数据集,重新编码音高和时值标签。(2)数据增强:对重新编码后的乐谱数据进行数据增强,本发明提出了4种不同的增强方法。(3)端到端模型:应用于端到端乐谱音符识别的深度卷积神经网络模型,将增强后的数据输入的模型,模型的输出为音符时值和音高。本发明在于针对打印体乐谱提出一个基于深度学习的乐谱音符识别模型,即输入整张乐谱图像到该模型,直接输出乐谱上音符的时值和音高,该模型完全端到端,能够精准识别多声部乐谱图像。

关键词:

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

专利基本信息 :

专利类型: 发明申请

申请(专利)号: CN201911090621.2

申请日期: 2019-11-09

公开(公告)日: 2020-02-28

公开(公告)号: CN110852375A

申请(专利权): 北京工业大学

法律状态: 驳回

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:309/5022472
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司