• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

王素玉 (王素玉.) | 李鑫 (李鑫.) | 于晨 (于晨.)

收录:

incoPat

摘要:

本发明公开了一种基于3D卷积神经网络的高光谱图像超分辨率复原方法,本发明采用如下的技术方案:3D残差密集网络,该网络创新点包括3D卷积核对高光谱图像光谱维进行卷积部分和3D亚像素重组对图像进行放大并重建高分辨率图像部分,将这两部分统一在深度卷积神经网络框架3D‑RDN中,通过残差密集块等结构充分利用卷积层的分层特征,实现对高光谱图像的超分辨率复原。当前现有的基于深度学习的方法应用于高光谱图像时,未充分考虑高光谱图像自身的特征,因而难以有效利用高光谱图像丰富的光谱维信息重建高分辨率的图像。本发明充分利用高光谱图像的所有空谱信息,实现高效超分辨率复原,在PSNR值上优于现有方法。

关键词:

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

专利基本信息 :

专利类型: 发明申请

申请(专利)号: CN201910160846.4

申请日期: 2019-03-04

公开(公告)日: 2019-06-18

公开(公告)号: CN109903255A

申请(专利权): 北京工业大学

法律状态: 驳回

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:397/4798314
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司