• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gao, Xuejin (Gao, Xuejin.) (学者:高学金) | Huang, Mengdan (Huang, Mengdan.) | Qi, Yongsheng (Qi, Yongsheng.) | Wang, Pu (Wang, Pu.)

收录:

EI PKU CSCD

摘要:

To overcome the problem of batch process caused by the traditional process dynamics multistage characteristic, the multiphase auto regression-principal component analysis (AR-PCA) monitoring method is proposed based on affine propagation (AP) clustering optimized with a population diversity-based particle swarm optimization algorithm (PDPSO). The method introduced PDPSO method to improve the AP clustering. It avoided the blindness of common method that indirectly chose the preference based on the clustering evaluation index. Then we established the AR-PCA model for the data samples of the multiphase fermentation process to eliminate the dynamic characteristics of each stage and the auto-and-cross-correlation between variables. Finally, the PCA model is established for the residual of the AR model for fault monitoring of the batch process. The method is applied to the process of penicillin fermentation. Experiments show that the method can effectively divide the process into different phases and reduce the false and leak alarms. © All Right Reserved.

关键词:

Batch data processing Fermentation Particle swarm optimization (PSO) Process control Process monitoring

作者机构:

  • [ 1 ] [Gao, Xuejin]Department of Information Science, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Gao, Xuejin]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 3 ] [Gao, Xuejin]Beijing Laboratory for Urban Mass Transit, Beijing; 100124, China
  • [ 4 ] [Gao, Xuejin]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Huang, Mengdan]Department of Information Science, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Huang, Mengdan]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 7 ] [Huang, Mengdan]Beijing Laboratory for Urban Mass Transit, Beijing; 100124, China
  • [ 8 ] [Huang, Mengdan]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 9 ] [Qi, Yongsheng]School of Electric Power, Inner Mongolia University of Technology, Huhhot; Inner Mongolia; 010051, China
  • [ 10 ] [Wang, Pu]Department of Information Science, Beijing University of Technology, Beijing; 100124, China
  • [ 11 ] [Wang, Pu]Engineering Research Center of Digital Community, Ministry of Education, Beijing; 100124, China
  • [ 12 ] [Wang, Pu]Beijing Laboratory for Urban Mass Transit, Beijing; 100124, China
  • [ 13 ] [Wang, Pu]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

  • [qi, yongsheng]school of electric power, inner mongolia university of technology, huhhot; inner mongolia; 010051, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CIESC Journal

ISSN: 0438-1157

年份: 2018

期: 9

卷: 69

页码: 3914-3923

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:221/3608697
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司