• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xue, Fei (Xue, Fei.) | Cao, Yang (Cao, Yang.) | Ding, Zhiming (Ding, Zhiming.) (学者:丁治明) | Tang, Hengliang (Tang, Hengliang.) | Yang, Xi (Yang, Xi.) | Chen, Lei (Chen, Lei.) | Li, Juntao (Li, Juntao.)

收录:

EI Scopus SCIE

摘要:

Regional population density has temporal and spatial characteristics, and most of the existing prediction models fail to take these two characteristics into account at the same time, which results in unsatisfactory forecasting results. To address this problem, we use the deep learning models to predict the crowd distribution in the evacuation area, so as to realize the recommendation of the evacuation area. First, a raster population density prediction model based on long short-term memory (LSTM) is studied, and then a multiarea population density prediction model considering temporal and spatial characteristics, named ST-LSTM, is designed. The results of our extensive experiments on the real dataset show that our proposed ST-LSTM is both effective and efficient.

关键词:

population density prediction deep learning spatio-temporal trajectory LSTM-CNN

作者机构:

  • [ 1 ] [Xue, Fei]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
  • [ 2 ] [Cao, Yang]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
  • [ 3 ] [Tang, Hengliang]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
  • [ 4 ] [Yang, Xi]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
  • [ 5 ] [Chen, Lei]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
  • [ 6 ] [Li, Juntao]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
  • [ 7 ] [Cao, Yang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 8 ] [Ding, Zhiming]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 9 ] [Ding, Zhiming]Chinese Acad Sci, Inst Software, Beijing, Peoples R China

通讯作者信息:

  • [Cao, Yang]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE

ISSN: 1532-0626

年份: 2020

期: 14

卷: 32

2 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:301/3918013
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司