收录:
摘要:
基于改进SURF特征的视觉词袋模型构建方法,使用添加渐变信息的盒子滤波模板代替高斯滤波,该模板与高斯二阶微分模板更加接近;在SURF特征表达时,减少了时间上的开销,并在保证旋转不变性的同时将SURF描述子降为32维;构建词袋时,使用上述改进SURF算法提取图像库中所有改进SURF特征,采用k‑means聚类方法将所有SURF特征聚类成为视觉单词,这样每幅图像表示为各个视觉单词出现频率的高维向量。本方法包含了图像更丰富的渐变信息,并且省略了一次Haar小波计算步骤;与直接使用SURF特征相比,可以很好地解决不同图像提取出的特征数量不统一的问题,并且词袋模型能将多幅图像用一定量的视觉单词表示,节约空间,处理方便,可扩展性强。
关键词:
通讯作者信息:
电子邮件地址: