• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

曹东芝 (曹东芝.) | 张兴兰 (张兴兰.) | 宁振虎 (宁振虎.) | 蒋雨辰 (蒋雨辰.) | 薛菲 (薛菲.) | 梁鹏 (梁鹏.)

收录:

incoPat

摘要:

本发明公开了基于混合蝙蝠算法的支持向量机参数选择方法。正则化参数和RBF核参数对SVM的学习性能和计算复杂度有很大的影响。在分析一些经典的参数选择方法优劣的基础上,引入利用智能优化算法对其参数进行优化。鉴于蝙蝠算法具有并行性,收敛速度快,鲁棒性强的优点,本发明首先利用蝙蝠算法对SVM参数进行优化,随后针对蝙蝠算法易早熟的缺点,引入差分进化算法交叉、选择和变异算子,使用蝙蝠个体在每次迭代过程中根据三个算子进一步调整位置,增强算法的搜索能力,避免其过早地陷入局部最优解。最后利用改进的DEBA算法优化SVM参数选择并取得了优异效果。

关键词:

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

专利基本信息 :

专利类型: 发明申请

申请(专利)号: CN201711300766.1

申请日期: 2017-12-10

公开(公告)日: 2018-06-05

公开(公告)号: CN108121999A

申请(专利权): 北京工业大学

法律状态: 驳回

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:296/4784718
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司