收录:
摘要:
本发明公开了基于多通道卷积神经网络和粒子滤波的视频目标跟踪方法,获取跟踪目标的前几帧视频图像;通过PCA对图像进行预处理, 得到降维后的图像;对处理后的图像在H、S、I三通道进行PCA学习;再将各通道经过PCA处理的特征向量来初始化CNN结构中的卷积核,建立多通道卷积神经网络来学习图像三个通道的特征,获得目标的深层次表达;最后,利用粒子群优化算法优化粒子滤波重采样后的粒子集,提高了标准粒子滤波算法的跟踪性能。本发明有效的提高了视频目标跟踪的性能,能更好地适应复杂多变的环境,在此类视频序列上表现出非常好的鲁棒性。
关键词:
通讯作者信息:
电子邮件地址: