• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

朱江淼 (朱江淼.) | 宋文峰 (宋文峰.)

收录:

incoPat

摘要:

一种基于改进型BP神经网络的氢原子钟钟差预测方法,本方法根据氢原子钟钟差特性、地面原子钟钟差数据与卫星钟钟差数据以及与日长数据的相似性,在卫星钟差小波神经网络预测算法和小波神经网络对日长预报算法中BP神经网络算法思想基础上,针对BP神经网络算法的不足,运用SVM算法中的预测惩罚模型,提出了基于改进BP神经网络算法对氢原子钟钟差数据进行预测方法。通过增加惩罚性措施来提高预测精度,来修正下一步预测值;使用限制预测数据变化幅度的措施来提高预测数据的稳定性和预测精度。该方法与现行的SVM预测算法和线性回归预测算法相比,其氢钟中差预测精度有明显提高,为提高氢原子钟的原子时标和驾驭精度提供了更高的依据。

关键词:

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

专利基本信息 :

专利类型: 发明授权

申请(专利)号: CN201510041024.6

申请日期: 2015-01-27

公开(公告)日: 2017-11-03

公开(公告)号: CN104679989B

申请(专利权): 北京工业大学

法律状态: 未缴年费

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:384/4789521
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司