• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Dong (Li, Dong.) (学者:李冬) | Zhao, Shi-Xun (Zhao, Shi-Xun.) | Wang, Jun-An (Wang, Jun-An.) | Zhu, Jin-Feng (Zhu, Jin-Feng.) | Guan, Hong-Wei (Guan, Hong-Wei.) | Zhang, Jie (Zhang, Jie.)

收录:

EI Scopus PKU PubMed CSCD

摘要:

A lab-scale, completely anaerobic ammonium oxidation (ANAMMOX) process was operated in a municipal wastewater treatment plant (WWTP). Sewage effluent treated by an A/O process and nitrification process was input as the substance to start up the up-flow ANAMMOX filter reactor. After the 109th day, the ammonia removal rate and nitrite removal rate were greater than 90% for 15 successive days and the nitrogen removal rate was higher than 70%. The ANAMMOX filter reactor successfully started up. From days 245 to 333, the reactor was running during the winter. The weight of biomass reached 12.24 mg•g-1, and the average nitrogen removal rate was 54.3%. Backwash was adopted at day 461, and the weight of biomass decreased to 8.01 mg•g-1. From days 605 to 693, the reactor was running in the winter again. The weight of biomass was 10.41 mg•g-1, and the average nitrogen removal rate was sustained at 69.7%. Compared with the previous winter, the weight of biomass was lighter but the total nitrogen removal loading was 23% greater. For the entire operation, the ANAMMOX rate at high temperature was stable but that at low temperature increased from 1.5 kg•(kg•d)-1 to 3.6 kg•(kg•d)-1. The results show: Long-term domestication at low temperature was in favor of improving treatment efficiency of ANAMMOX process in cold environment and realized ANAMMOX process operated efficiently in winter. © 2018, Science Press. All right reserved.

关键词:

Ammonia Biological membranes Biomass Effluents Filtration Nitrification Nitrogen removal Sewage Sewage pumping plants Sewage treatment plants Temperature Wastewater treatment Water treatment plants

作者机构:

  • [ 1 ] [Li, Dong]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhao, Shi-Xun]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Wang, Jun-An]Technology Research and Development Center, Beijing Sander Environmental Group, Beijing; 101102, China
  • [ 4 ] [Zhu, Jin-Feng]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Guan, Hong-Wei]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Zhang, Jie]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 7 ] [Zhang, Jie]State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin; 150090, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Environmental Science

ISSN: 0250-3301

年份: 2018

期: 2

卷: 39

页码: 859-864

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:39/3610660
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司