• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Xiao-Xia (Wang, Xiao-Xia.) | Wang, Shu-Ying (Wang, Shu-Ying.) (学者:王淑莹) | Zhao, Ji (Zhao, Ji.) | Dai, Xian (Dai, Xian.) | Peng, Yong-Zhen (Peng, Yong-Zhen.) (学者:彭永臻)

收录:

EI PKU CSCD CSSCI

摘要:

In order to analyze the nitrogen (N) and phosphorus (P) removal characteristics of simultaneous partial nitrification-endogenous denitrification and phosphorus removal (SPNED-PR) systems and to elucidate the contribution and competitive relationships between phosphorus and glycogen accumulating organisms (PAOs and GAOs) in the nutrient removal, an extended anaerobic (150min)/low aerobic (180min, dissolved oxygen (DO) concentration for 0.5~0.7mg/L) operated sequencing batch reactor (SBR) fed with domestic wastewater (C/N: around 4) was studied by investigating the effects of different DO (0.5~2.0mg/L), nitrite (4.7~39.9mg/L) and nitrate (5.0~40.0mg/L) concentrations on the nutrient removal and intracellular carbons transformation. Results showed that DO had barely effects on the aerobic metabolisms of both PAOs and GAOs, and almost no PAOs-GAOs competition was detected at various DO concentrations. GAOs had a competitive advantage over PAOs at the presence of nitrite, and nitrite was mainly removed by GAOs (about 58%); GAOs had a greater tolerance to nitrite than PAOs, which alleviated the nitrite inhibition on PAOs at high nitrite concentrations (26.2~39.9mg/L) and assured the nutrient removal in the SPNED-PR system. PAOs had a competitive advantage over GAOs when nitrate was present, and it contributed to about 61.2% of total nitrate removal. Additionally, PAOs preferred to utilize DO over nitrite and nitrate for P uptake (PURDO>PURnitrate>PURnitrite), which assured the efficient P removal at low aerobic conditions. Highly active GAOs ensured the efficient N removal in the SPNED-PR system via endogenous nitrite denitrification. © 2018, Editorial Board of China Environmental Science. All right reserved.

关键词:

Nutrients Dissolved oxygen Batch reactors Nitrogen removal Phosphorus Nitrates Competition Nitrification Denitrification

作者机构:

  • [ 1 ] [Wang, Xiao-Xia]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Wang, Xiao-Xia]Department of Environmental Engineering, Qingdao University, Qingdao; 266071, China
  • [ 3 ] [Wang, Shu-Ying]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Zhao, Ji]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Dai, Xian]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Peng, Yong-Zhen]National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [wang, xiao-xia]national engineering laboratory for advanced municipal wastewater treatment and reuse technology, key laboratory of beijing for water quality science and water environment recovery engineering, beijing university of technology, beijing; 100124, china;;[wang, xiao-xia]department of environmental engineering, qingdao university, qingdao; 266071, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

China Environmental Science

ISSN: 1000-6923

年份: 2018

期: 2

卷: 38

页码: 551-559

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:95/4299320
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司