• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Guan (Li, Guan.) (学者:关丽) | Liu, Zhifeng (Liu, Zhifeng.) (学者:刘志峰) | Cai, Ligang (Cai, Ligang.) (学者:蔡力钢) | Yan, Jun (Yan, Jun.)

收录:

EI SCIE PubMed

摘要:

During human-robot collaborations (HRC), robot systems must accurately perceive the actions and intentions of humans. The present study proposes the classification of standing postures from standing-pressure images, by which a robot system can predict the intended actions of human workers in an HRC environment. To this end, it explores deep learning based on standing-posture recognition and a multi-recognition algorithm fusion method for HRC. To acquire the pressure-distribution data, ten experimental participants stood on a pressure-sensing floor embedded with thin-film pressure sensors. The pressure data of nine standing postures were obtained from each participant. The human standing postures were discriminated by seven classification algorithms. The results of the best three algorithms were fused using the Dempster-Shafer evidence theory to improve the accuracy and robustness. In a cross-validation test, the best method achieved an average accuracy of 99.96%. The convolutional neural network classifier and data-fusion algorithm can feasibly classify the standing postures of human workers.

关键词:

convolutional neural network data fusion HRC machine learning standing-posture recognition

作者机构:

  • [ 1 ] [Li, Guan]Beijing Univ Technol, Inst Adv Mfg & Intelligent Technol, Beijing 100022, Peoples R China
  • [ 2 ] [Liu, Zhifeng]Beijing Univ Technol, Inst Adv Mfg & Intelligent Technol, Beijing 100022, Peoples R China
  • [ 3 ] [Li, Guan]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing 100022, Peoples R China
  • [ 4 ] [Liu, Zhifeng]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing 100022, Peoples R China
  • [ 5 ] [Cai, Ligang]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing 100022, Peoples R China
  • [ 6 ] [Yan, Jun]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing 100022, Peoples R China
  • [ 7 ] [Li, Guan]North China Inst Sci & Technol, Langfang 065201, Peoples R China
  • [ 8 ] [Cai, Ligang]Mech Ind Key Lab Heavy Machine Tool Digital Desig, Beijing 100022, Peoples R China
  • [ 9 ] [Yan, Jun]Mech Ind Key Lab Heavy Machine Tool Digital Desig, Beijing 100022, Peoples R China

通讯作者信息:

  • 刘志峰

    [Liu, Zhifeng]Beijing Univ Technol, Inst Adv Mfg & Intelligent Technol, Beijing 100022, Peoples R China;;[Liu, Zhifeng]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing 100022, Peoples R China

查看成果更多字段

相关关键词:

来源 :

SENSORS

年份: 2020

期: 4

卷: 20

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:33

JCR分区:1

被引次数:

WoS核心集被引频次: 24

SCOPUS被引频次: 29

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

在线人数/总访问数:131/3611912
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司