• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jinghua (Li, Jinghua.) | Yan, Huixia (Yan, Huixia.) | Gao, Junbin (Gao, Junbin.) | Kong, Dehui (Kong, Dehui.) (学者:孔德慧) | Wang, Lichun (Wang, Lichun.) (学者:王立春) | Wang, Shaofan (Wang, Shaofan.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

Variational Auto-Encoder (VAE) is an important probabilistic technology to model 1D vectorial data. However, when applying VAE model to 2D image, vectorization is necessary. Vectorization process may lead to dimension curse and lose valuable spatial information. To avoid these problems, we propose a novel VAE model based on matrix variables named as Matrix-variate Variational Auto-Encoder (MVVAE). In this model, input, hidden and latent variables are all in matrix form, therefore inherent spatial structure of 2D images can be maintained and utilized better. Especially, the latent variable is assumed to follow matrix Gaussian distribution which is more suitable for describing 2D images. To solve the weights and the posterior of latent variable, the variational inference process is given. The experiments are designed for three real-world application: reconstruction, denoising and completion. The experimental results demonstrate that MVVAE shows better performance than VAE and other probabilistic methods for modeling and processing 2D data. (C) 2020 Elsevier Inc. All rights reserved.

关键词:

Image denoising Face completion Variational inference Variational autoencoder Matrix Gaussian distribution

作者机构:

  • [ 1 ] [Li, Jinghua]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 2 ] [Yan, Huixia]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 3 ] [Kong, Dehui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 4 ] [Wang, Lichun]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 5 ] [Wang, Shaofan]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 6 ] [Yin, Baocai]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China
  • [ 7 ] [Gao, Junbin]Univ Sydney, Univ Sydney Business School, Discipline Business Analyt, Sydney, NSW 2006, Australia
  • [ 8 ] [Yin, Baocai]Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian, Peoples R China

通讯作者信息:

  • [Li, Jinghua]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION

ISSN: 1047-3203

年份: 2020

卷: 67

2 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:640/3902793
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司