• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Jing (Zhang, Jing.) | Lin, Shaofu (Lin, Shaofu.) | Ding, Lei (Ding, Lei.) | Bruzzone, Lorenzo (Bruzzone, Lorenzo.)

收录:

EI Scopus SCIE

摘要:

The semantic segmentation of remote sensing images (RSIs) is important in a variety of applications. Conventional encoder-decoder-based convolutional neural networks (CNNs) use cascade pooling operations to aggregate the semantic information, which results in a loss of localization accuracy and in the preservation of spatial details. To overcome these limitations, we introduce the use of the high-resolution network (HRNet) to produce high-resolution features without the decoding stage. Moreover, we enhance the low-to-high features extracted from different branches separately to strengthen the embedding of scale-related contextual information. The low-resolution features contain more semantic information and have a small spatial size; thus, they are utilized to model the long-term spatial correlations. The high-resolution branches are enhanced by introducing an adaptive spatial pooling (ASP) module to aggregate more local contexts. By combining these context aggregation designs across different levels, the resulting architecture is capable of exploiting spatial context at both global and local levels. The experimental results obtained on two RSI datasets show that our approach significantly improves the accuracy with respect to the commonly used CNNs and achieves state-of-the-art performance.

关键词:

semantic segmentation deep learning convolutional neural network image analysis remote sensing

作者机构:

  • [ 1 ] [Zhang, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100022, Peoples R China
  • [ 2 ] [Lin, Shaofu]Beijing Univ Technol, Fac Informat Technol, Beijing 100022, Peoples R China
  • [ 3 ] [Lin, Shaofu]Beijing Univ Technol, Beijing Inst Smart City, Beijing 100022, Peoples R China
  • [ 4 ] [Ding, Lei]Univ Trento, Remote Sensing Lab, Dept Informat Engn & Comp Sci, Via Sommarive 5, I-38122 Trento, Italy
  • [ 5 ] [Bruzzone, Lorenzo]Univ Trento, Remote Sensing Lab, Dept Informat Engn & Comp Sci, Via Sommarive 5, I-38122 Trento, Italy

通讯作者信息:

  • [Ding, Lei]Univ Trento, Remote Sensing Lab, Dept Informat Engn & Comp Sci, Via Sommarive 5, I-38122 Trento, Italy

查看成果更多字段

相关关键词:

相关文章:

来源 :

REMOTE SENSING

年份: 2020

期: 4

卷: 12

5 . 0 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:99

被引次数:

WoS核心集被引频次: 126

SCOPUS被引频次: 139

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:279/4298110
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司