收录:
摘要:
一种基于局部模块度的遗传算法用于大规模复杂网络社区挖掘的方法,属于复杂网络社区挖掘技术领域,包括:对网络社区划分进行编码;种群初始化;计算适应度函数;进行遗传操作:交叉、变异、选择;解码,得到最佳社区划分。本发明通过在交叉算子中加入轮盘赌选择,而不是随机选择种群中的个体进行交叉操作,使高适应度个体具有优先选择性,可以加快最优划分的产生;在变异算子中引入局部模块度函数,使变异后的候选解更接近最优解,强化了变异算子的局部搜索能力,更具针对性,提高了算法的搜索性能;利用LMGACD算法进行复杂网络社区挖掘可以取得好的划分效果,且时间复杂度较低。
关键词:
通讯作者信息:
电子邮件地址: