收录:
摘要:
Combining modern thermodynamic theories, including finite time thermodynamics, constructal theory and entransy theory, with metallurgical process engineering, a generalized thermodynamic optimization theory for iron and steel production processes is proposed. The simulation platform for the energy consumption and emissions of the iron and steel production process is built, and the evaluation method of the material flows, energy flows and environment combining exergy analysis with life cycle assessment is established. On the basis of the new theory, simulation platform and evaluation method, interaction mechanism investigations for the material flows, energy flows and environment of the elemental packages, working procedure modules, functional subsystems and whole process of the iron and steel production processes are conducted, and multi-disciplinary and multi-objective generalized thermodynamic optimizations of them are also implemented. After optimizations, the selections of the processes and technologies, the distributions of the materials and energies as well as the utilizations of the residual energies and heats are more reasonable. The systems of the whole process are integrated, and the material flows, energy flows and environment are synthetically coordinated. Finally, the efficient allocation of the energies and the cascade utilization of the residual energies are realized, and the energy consumption and emissions of the whole system are significantly decreased. This paper can provide theoretical supports for the designs and operations of the energy and environmental protection center of the iron and steel enterprises by exploring the efficient, energy-saving and low emission technologies of the iron and steel production processes. It also can provide research platforms and lay science and technology bases for solving the common efficient energy-saving problems of the general material transformation processes. © 2018, Science Press. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: