• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lin, Jia (Lin, Jia.) | Ruan, Xiaogang (Ruan, Xiaogang.) | Yu, Naigong (Yu, Naigong.) (学者:于乃功) | Cai, Jianxian (Cai, Jianxian.)

收录:

EI Scopus

摘要:

This paper proposes a novel moving hand segmentation approach using skin color, grayscale, depth, and motion cues for gesture recognition. The proposed approach does not depend on unreasonable restrictions, and it can solve the problem of hand-over-face occlusion. First, an online updated skin color histogram (OUSCH) model is built to robustly represent skin color; second, according to the variance information of grayscale and depth optical flow, a motion region of interest (MRoI) is adaptively extracted to locate the moving body part (MBP) and reduce the impact of noise; then, Harris-Affine corners that satisfy skin color and adaptive motion constraints are adopted as skin seed points in the MRoI; next, the skin seed points are grown to obtain a candidate hand region utilizing skin color, depth and motion criteria; finally, boundary depth gradient, skeleton extraction, and shortest path search are employed to segment the moving hand region from the candidate hand region. Experimental results demonstrate that the proposed approach can accurately segment moving hand regions under different situations, especially when the face is occluded by a hand. Furthermore, this approach achieves higher segmentation accuracy than other state-of-the-art approaches. © Allerton Press, Inc., 2017.

关键词:

Color Gesture recognition Image segmentation Palmprint recognition

作者机构:

  • [ 1 ] [Lin, Jia]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Ruan, Xiaogang]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Yu, Naigong]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Cai, Jianxian]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Automatic Control and Computer Sciences

ISSN: 0146-4116

年份: 2017

期: 3

卷: 51

页码: 193-203

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:77/3275832
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司