• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | Lin, Zheng-Lai (Lin, Zheng-Lai.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

EI Scopus PKU CSCD

摘要:

To improve the convergence speed and generalization ability of the fuzzy neural network (FNN), a fuzzy neural network, based on the hybrid gradient (HG) descent algorithm, is proposed in this paper. This HG-FNN can obtain the adaptive learning rate of the parameter adjustment process. Then, the chain rule is used to calculate the gradient descent of the learning process to adjust the parameters of FNN. Meanwhile, the convergence proof of HG-FNN is given in details to ensure the convergence speed and the precision of FNN. Finally, the proposed HG-FNN is used to model the nonlinear systems and predict the effluent qualities of wastewater treatment process. The results show that the proposed HG-FNN owns faster convergence speed, as well as with suitable generalization ability than other FNNs. © 2017, Editorial Office of Control and Decision. All right reserved.

关键词:

Effluents Effluent treatment Fuzzy inference Fuzzy logic Fuzzy neural networks Gradient methods Learning systems Nonlinear systems Wastewater treatment Water quality

作者机构:

  • [ 1 ] [Han, Hong-Gui]College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Han, Hong-Gui]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Lin, Zheng-Lai]College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Lin, Zheng-Lai]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Qiao, Jun-Fei]College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Qiao, Jun-Fei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • 韩红桂

    [han, hong-gui]college of electronic information & control engineering, beijing university of technology, beijing; 100124, china;;[han, hong-gui]beijing key laboratory of computational intelligence and intelligent system, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Control and Decision

ISSN: 1001-0920

年份: 2017

期: 9

卷: 32

页码: 1635-1641

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:193/3611273
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司