• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Cao, Yang (Cao, Yang.) | Xue, Fei (Xue, Fei.) | Chi, Yuanying (Chi, Yuanying.) (学者:迟远英) | Ding, Zhiming (Ding, Zhiming.) (学者:丁治明) | Guo, Limin (Guo, Limin.) | Cai, Zhi (Cai, Zhi.) | Tang, Hengliang (Tang, Hengliang.)

收录:

EI Scopus SCIE

摘要:

The daily trajectories of individual movements convey a concise overview of their behaviors, with different social roles having different trajectory patterns. Therefore, we can identify users or groups based on the similar of their trajectory patterns. However, most existing trajectory analysis focuses only on the spatial and temporal analyses of the raw trajectory data and misses essential semantic information concerning behaviors. In this paper, we propose a new trajectory semantics calculation method to identify groups with similar behaviors. We first propose a fast and efficient two-phase method for identifying stay regions within daily trajectories and enriching the stay regions with semantic labels based on points of interest to generate semantic trajectories. Furthermore, we design a semantic similarity measure model using geographic and semantic similarity factors to measure the similarity between semantic trajectories. We also propose a pruning strategy using time entropy to decrease the number of complex calculations and comparisons to improve performance. The results of our extensive experiments on the real trajectory dataset of the Geolife project show that our proposed method is both effective and efficient.

关键词:

Mobility data Trajectory semantic Semantic enrichment Group identification Similar behaviors

作者机构:

  • [ 1 ] [Cao, Yang]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
  • [ 2 ] [Xue, Fei]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
  • [ 3 ] [Tang, Hengliang]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
  • [ 4 ] [Cao, Yang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Ding, Zhiming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Guo, Limin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Cai, Zhi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 8 ] [Chi, Yuanying]Beijing Univ Technol, Coll Econ & Management, Beijing 100124, Peoples R China

通讯作者信息:

  • 丁治明

    [Ding, Zhiming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS

ISSN: 1868-8071

年份: 2020

期: 2

卷: 11

页码: 287-300

5 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 8

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:296/4296625
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司