• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Hong (Zhao, Hong.) | Zhu, Zhong-Zhi (Zhu, Zhong-Zhi.) | Xu, Pei-Zhi (Xu, Pei-Zhi.) | Wang, Wei-Dong (Wang, Wei-Dong.)

收录:

EI Scopus

摘要:

Keyword extraction is a critical technique for document retrieval and text mining, Web page retrieval and document clustering. The traditional keyword extraction method is overly dependent on word frequency, which may lead to the limitations of the keyword extraction in short sentences. In order to solve this problem, we propose a novel word embedding generation method for keyword extraction, which trains a special domain word embedding to extract keywords automatically from user-generated query words. To ensure that the experimental results are not biased by the above test sample, we train the word embedding with the Chinese version of Wikipedia for contrast experiment. Compared with other methods, the recall rate of the proposed method reaches 92.55%, higher than the other current methods.

关键词:

Data mining Extraction Information retrieval

作者机构:

  • [ 1 ] [Zhao, Hong]Department of Software Engineering, Beijing JiaoTong University, Beijing, Beijing; 100044, China
  • [ 2 ] [Zhu, Zhong-Zhi]Department of Software Engineering, Beijing JiaoTong University, Beijing, Beijing; 100044, China
  • [ 3 ] [Xu, Pei-Zhi]Baidu Online Network Technology (Beijing) Co., Ltd, Beijing, Beijing; 100094, China
  • [ 4 ] [Wang, Wei-Dong]Faculty of Information Technology, Beijing University of Technology, Beijing, Beijing; 1000124, China

通讯作者信息:

  • [zhao, hong]department of software engineering, beijing jiaotong university, beijing, beijing; 100044, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Technical Bulletin

ISSN: 0376-723X

年份: 2017

期: 3

卷: 55

页码: 41-47

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:358/3901478
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司