• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Shaobo (Wang, Shaobo.) | Du, Xinhui (Du, Xinhui.) | Liu, Guangliang (Liu, Guangliang.) | Xing, Hang (Xing, Hang.) | Jiao, Zengtao (Jiao, Zengtao.) | Yan, Jun (Yan, Jun.) | Liu, Youjun (Liu, Youjun.) (学者:刘有军) | Lv, Haichen (Lv, Haichen.) | Xia, Yunlong (Xia, Yunlong.)

收录:

EI Scopus SCIE

摘要:

Difficulty in knowledge validation is a significant hindrance to knowledge discovery via data mining, especially automatic validation without artificial participation. In the field of medical research, medical knowledge discovery from electronic medical records is a common medical data mining method, but it is difficult to validate the discovered medical knowledge without the participation of medical experts. In this article, we propose a data-driven medical knowledge discovery closed-loop pipeline based on interpretable machine learning and deep learning; the components of the pipeline include Data Generator, Medical Knowledge Mining, Medical Knowledge Evaluation, and Medical Knowledge Application. In addition to completing the discovery of medical knowledge, the pipeline can also automatically validate the knowledge. We apply our pipeline's discovered medical knowledge to a traditional prognostic predictive model of heart failure in a real-world study, demonstrating that the incorporation of medical knowledge can effectively improve the performance of the traditional model. We also construct a scale model based on the discovered medical knowledge and demonstrate that it achieves good performance. To guarantee its medical effectiveness, every process of our pipeline involves the participation of medical experts.

关键词:

Heart Failure Electronic Medical Records Machine Learning Medical Knowledge Discovery

作者机构:

  • [ 1 ] [Wang, Shaobo]Beijing Univ Technol, Beijing 100022, Peoples R China
  • [ 2 ] [Liu, Youjun]Beijing Univ Technol, Beijing 100022, Peoples R China
  • [ 3 ] [Wang, Shaobo]Beijing Technol Co Ltd, Yidu Cloud, Beijing 100000, Peoples R China
  • [ 4 ] [Du, Xinhui]Beijing Technol Co Ltd, Yidu Cloud, Beijing 100000, Peoples R China
  • [ 5 ] [Liu, Guangliang]Beijing Technol Co Ltd, Yidu Cloud, Beijing 100000, Peoples R China
  • [ 6 ] [Xing, Hang]Beijing Technol Co Ltd, Yidu Cloud, Beijing 100000, Peoples R China
  • [ 7 ] [Jiao, Zengtao]Beijing Technol Co Ltd, Yidu Cloud, Beijing 100000, Peoples R China
  • [ 8 ] [Yan, Jun]Beijing Technol Co Ltd, Yidu Cloud, Beijing 100000, Peoples R China
  • [ 9 ] [Liu, Guangliang]Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA
  • [ 10 ] [Lv, Haichen]Dalian Med Univ, Dept Cardiol, Affiliated Hosp 1, Dalian 116011, Peoples R China
  • [ 11 ] [Xia, Yunlong]Dalian Med Univ, Dept Cardiol, Affiliated Hosp 1, Dalian 116011, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

ISSN: 2168-2194

年份: 2023

期: 10

卷: 27

页码: 5099-5109

7 . 7 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:224/4898209
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司