• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Luo, Yihang (Luo, Yihang.) | Gong, Bei (Gong, Bei.) (学者:公备) | Zhu, Haotian (Zhu, Haotian.) | Guo, Chong (Guo, Chong.)

收录:

Scopus SCIE

摘要:

The machine learning paradigms driven by the sixth-generation network (6G) facilitate an ultra-fast and low-latency communication environment. However, specific research and practical applications have revealed that there are still various issues regarding their applicability. A system named Incentivizing Secure Federated Learning Systems (ISFL-Sys) is proposed, consisting of a blockchain module and a federated learning module. A data-security-oriented trustworthy federated learning mechanism called Efficient Trustworthy Federated Learning (ETFL) is introduced in the system. Utilizing a directed acyclic graph as the ledger for edge nodes, an incentive mechanism has been devised through the use of smart contracts to encourage the involvement of edge nodes in federated learning. Experimental simulations have demonstrated the efficient security of the proposed federated learning mechanism. Furthermore, compared to benchmark algorithms, the mechanism showcases improved convergence and accuracy.

关键词:

privacy protection federated learning incentive mechanism blockchain

作者机构:

  • [ 1 ] [Luo, Yihang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Gong, Bei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhu, Haotian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Guo, Chong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

APPLIED SCIENCES-BASEL

年份: 2023

期: 19

卷: 13

2 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:358/4969763
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司