• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Shuang (Liu, Shuang.) | Zhen, Cheng (Zhen, Cheng.) | Li, Dan (Li, Dan.) | Wang, Yishu (Wang, Yishu.) | Jia, Qiang (Jia, Qiang.) | Guo, Fu (Guo, Fu.) (学者:郭福)

收录:

EI Scopus SCIE

摘要:

Bismuth telluride-based thermoelectric (TE) devices were widely used in waste heat recovery due to their high thermoelectric figure of merit (ZT), but the severe diffusion between Sn-based solder and TE pillar generated porous and brittle Sn-Te intermetallic compound (IMC), which seriously restricted the reliable service of devices. Ni-based coating was used but the thick Ni-Te IMC also impaired the properties of TE pillars. In this work, the crystalline Co-P coating was inserted between the p-type TE material Bi0.5Sb1.5Te3 and the solder by electrodeposition, and the power generation sustainability of the TE pillar were significantly improved, and the mechanism was revealed. The microstructural characterization proved that the Co-P coating could effectively resist the diffusion of active Sn, Bi, Sb, Cu atoms. Co-P coating would provide support for the structural integrity and performance sustainability of TE pillars. It was worth noting that an ultrathin CoTe2 IMC layer was formed between the Co-P coating and the Bi-Sb-Te pillar, which was much thinner than the Ni-Te IMC layer reported in the literature. This indicated that Co-P only consumed little thermoelectric elements, but also a good metallurgical bond was formed between the Co-P and the Bi-Sb-Te. After aging at 423 K for 150 h, the maximum output power and average Seebeck coefficient of the TE pillar without coating dropped significantly by 74% and 34%, respectively, and the internal resistance rose by 67%. Remarkably, the maximum output power and average Seebeck coefficient of the TE pillar protected by the Co-P coating only decreased by 14% and 5%, respectively, and the internal resistance only increased by 6%.

关键词:

Bismuth telluride Solder Interfacial diffusion Co-P coating Intermetallic compound Thermoelectric device

作者机构:

  • [ 1 ] [Liu, Shuang]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 2 ] [Zhen, Cheng]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Dan]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Yishu]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 5 ] [Jia, Qiang]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 6 ] [Guo, Fu]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 7 ] [Liu, Shuang]Beijing Univ Technol, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 8 ] [Zhen, Cheng]Beijing Univ Technol, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 9 ] [Li, Dan]Beijing Univ Technol, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 10 ] [Wang, Yishu]Beijing Univ Technol, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 11 ] [Jia, Qiang]Beijing Univ Technol, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 12 ] [Guo, Fu]Beijing Univ Technol, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

APPLIED ENERGY

ISSN: 0306-2619

年份: 2023

卷: 352

1 1 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:464/4954988
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司