• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Limei (Zhang, Limei.) | Zheng, Hong (Zheng, Hong.) (学者:郑宏)

收录:

EI Scopus SCIE

摘要:

In this study, the moving least squares based numerical manifold method (MLS-NMM) is presented to solve threedimensional (3D) transient heat conduction problems of functionally graded materials (FGMs), where the increment dimensional precise integration method (IPIM) is applied to integrate the ordinary differential equations derived from the semi-discrete form. In the 3D MLS-NMM, the influence domains of the MLS-nodes are taken as the mathematical patches which are used to construct the mathematical cover (MC), and the shape functions of the MLS-nodes are employed as the weight functions subordinate to the MC. MLS-NMM is utilized for spatial discretization of the weak form of the problem. The IPIM overcomes the shortcomings of traditional backward difference scheme dependent on the time step and greatly improves the computing efficiency. Meanwhile, a mass lumping technique is proposed for the 3D MLS-NMM. Furthermore, a number of numerical experiments on transient thermal conduction are conducted, suggesting that the 3D MLS-NMM based on IPIM and the proposed mass lumping has excellent accuracy, absolutely stable and high computing efficiency.

关键词:

Three-dimensional transient heat conduction Increment-dimensional precise integration method Functionally graded materials Mass lumping Moving least squares based numerical manifold method

作者机构:

  • [ 1 ] [Zhang, Limei]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Zheng, Hong]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Limei]China Geol Survey, China Inst Geol Environm Monitoring, Beijing 100081, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER

ISSN: 0017-9310

年份: 2023

卷: 217

5 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:432/4930601
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司