• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Yu-Guang (Yang, Yu-Guang.) | Niu, Ming-Xin (Niu, Ming-Xin.) | Zhou, Yi-Hua (Zhou, Yi-Hua.) | Shi, Wei-Min (Shi, Wei-Min.) | Jiang, Dong-Hua (Jiang, Dong-Hua.) | Liao, Xin (Liao, Xin.)

收录:

EI Scopus SCIE

摘要:

A novel visually secure image encryption algorithm is proposed by combining compressive sensing and deep neural networks. To achieve a tradeoff between the visual quality and the reconstruction quality in different scenarios, a multi-channel sampling network structure is constructed to provide different compression performances. Then, the pre-encrypted compressed image is embedded into the host image by the IWT embedding strategy in the sampling network. During the matrix reconstruction process, a deep reconstruction network is employed for full image denoising, significantly reducing the impact of block artifacts and resulting in reconstructed images with higher visual quality. Simulation results indicate that the present algorithm can reconstruct images efficiently with high quality at very low sampling rates, while greatly preserving the advantages of speed and learning ability of deep neural networks.

关键词:

Compressive sensing Block compressive sensing Deep neural networks Visually secure image encryption Chaotic system

作者机构:

  • [ 1 ] [Yang, Yu-Guang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Niu, Ming-Xin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhou, Yi-Hua]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Shi, Wei-Min]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Jiang, Dong-Hua]Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 511400, Peoples R China
  • [ 6 ] [Liao, Xin]Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China

通讯作者信息:

  • [Yang, Yu-Guang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

MULTIMEDIA TOOLS AND APPLICATIONS

ISSN: 1380-7501

年份: 2023

期: 10

卷: 83

页码: 29777-29803

3 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:340/4976355
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司