• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Qiao, Junfei (Qiao, Junfei.) (Scholars:乔俊飞) | Li, Fei (Li, Fei.) | Yang, Shengxiang (Yang, Shengxiang.) | Yang, Cuili (Yang, Cuili.) | Li, Wenjing (Li, Wenjing.) | Gu, Ke (Gu, Ke.) (Scholars:顾锞)

Indexed by:

EI Scopus SCIE

Abstract:

In general, for the iteration process of an evolutionary algorithm (EA), there exists the problem of uneven distribution of individuals in the target space for both multi-objective and single-objective optimization problems. This uneven distribution significantly degrades the population diversity and convergence speed. This paper proposes an adaptive hybrid evolutionary immune algorithm based on a uniform distribution selection mechanism (AU-DHEIA) for solving MOPs efficiently. In AUDHEIA, the individuals in the population are mapped to a hyperplane, which is correlated with the objective space and are clustered to increase the diversity of solutions. To improve the distribution of the solutions, the mapped hyperplane is evenly sectioned. With the constantly changing distribution during the iteration, a threshold as a standard for judging the distribution level is adjusted adaptively. When the threshold is not satisfied in the corresponding interval, the distribution enhancement module is activated. Then, the same number of individuals should be selected in each interval. However, sometimes, there are insufficient or no individuals in the interval during the iterative process. To obtain sufficient individuals, the limit optimization variation strategy of the best individual is adopted. Experiments show that this algorithm can escape from local optima and has a high convergence speed. Moreover, the distribution and convergence of this algorithm are superior to the peer algorithms tested in this paper. (C) 2019 Published by Elsevier Inc.

Keyword:

Local variation Immune algorithm Uniform distribution selection Multi-objective optimization Distribution enhancement

Author Community:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Fei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yang, Cuili]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Wenjing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 7 ] [Li, Fei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 8 ] [Yang, Cuili]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 9 ] [Li, Wenjing]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 10 ] [Gu, Ke]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 11 ] [Yang, Shengxiang]De Montfort Univ, Sch Comp Sci & Informat, Ctr Computat Intelligence, Leicester LE1 9BH, Leics, England

Reprint Author's Address:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

INFORMATION SCIENCES

ISSN: 0020-0255

Year: 2020

Volume: 512

Page: 446-470

8 . 1 0 0

JCR@2022

ESI Discipline: COMPUTER SCIENCE;

ESI HC Threshold:132

Cited Count:

WoS CC Cited Count: 25

SCOPUS Cited Count: 36

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:588/5307824
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.