收录:
摘要:
Based on the concept of structural fuses and the target of reducing residual displacement, the design concept of self-centering energy dissipation brace (SCEB) applied in the structural fuse for double-column bridge structure was proposed. Firstly, a novel SCEB-self-centering buckling restrained brace was proposed. The working mechanism was clarified and the mechanical behavior of the SCEB was experimentally verified. The restoring force model of double-column bridge piers with SCEB was then established based on the mechanical performance of the SECB, and the design method of the SCEB for double-column bridge pier was proposed. The damage of the column could be reduced and the residual displacement of the structure could be effectively controlled, with the reasonable design of the SCEB for yielding and dissipating energy before the column. Numerical analyses on seismic performance of the pier with the SCEB were carried out by OpenSees FE platform to assess the viability and the availability. The results show that the proposed SCEB exhibits good self-centering abilities and moderate energy dissipation capability, and force-displacement hysteretic curves present the flag-shaped characteristic. Numerical simulations manifest that the seismic performance and energy dissipation capacity of bridge with the fuse element are better than those of the cross link beam structure, and SCEB used in double-column piers is effective. In particular, the SCEB, compared with BRB, can enhance the lateral stiffness, the protective action and energy dissipation capacity of bridge columns to mitigate the seismic damage of columns. The residual displacement of columns can be effectively reduced and eliminated by SCEB. © 2017, Editorial Department of China Journal of Highway and Transport. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: