收录:
摘要:
Traditional buckling restrained braces are widely used in buildings, but the structure may have large residual deformation after earthquakes, which is not easy to repair. This paper presents a new self-centering replaceable mild steel energy-dissipating brace and a theoretical design method. Low cyclic loading tests on the new brace specimens with the scale factor of 0.6 were conducted to study the mechanical performance. Besides, numerical simulation is carried out, and the results are compared with the test. The results show that the new self-centering replaceable mild steel energy-dissipating braces can achieve good energy dissipating performance through high-order buckling, the plastic deformation of the main body is not affected during the loading process. Meanwhile, the residual deformation is very small and the structure has a good self-centering capacity and mechanical performance. The appropriate reduction of the distance between the steel brackets, the multi-order buckling and plastic development of the mild steel energy dissipating members are preferred, because the energy dissipation capacity of the braces can be improved especially when the braces are under compression. With the replacement of the mild steel energy-dissipating segments, the braces can continue to work. The design objective of self-centering replaceable mild steel members can be achieved. © 2017, Engineering Mechanics Press. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: