• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞) | Han, Gai-Tang (Han, Gai-Tang.) | Zhou, Hong-Biao (Zhou, Hong-Biao.)

收录:

EI Scopus PKU CSCD

摘要:

In order to solve the problems of excessive energy consumption and serious water quality in wastewater treatment process, a wastewater treatment process intelligent optimization control method based on knowledge is proposed. Knowledge model of environment variable parameters and optimal solutions are built by memorizing the dynamic processing information of the multi-objective intelligent optimization algorithm. The optimization algorithm is guided by the non-dominated solution in the knowledge base, and combines the oriented local area search and the stochastic global search strategy to improve the convergence of the algorithm and obtains a higher quality solution. Finally, experiment verification is performed on the international common simulation platform BSM1. Results show that the proposed method can reduce energy consumption under the premise of ensuring the quality of the effluent. Copyright © 2017 Acta Automatica Sinica. All rights reserved.

关键词:

Multiobjective optimization Process control Reclamation Stochastic systems Water quality Knowledge based systems Effluents Wastewater treatment Water treatment Energy utilization

作者机构:

  • [ 1 ] [Qiao, Jun-Fei]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Qiao, Jun-Fei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Han, Gai-Tang]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Han, Gai-Tang]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Zhou, Hong-Biao]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Zhou, Hong-Biao]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

  • 乔俊飞

    [qiao, jun-fei]faculty of information technology, beijing university of technology, beijing; 100124, china;;[qiao, jun-fei]beijing key laboratory of computational intelligence and intelligent system, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Acta Automatica Sinica

ISSN: 0254-4156

年份: 2017

期: 6

卷: 43

页码: 1038-1046

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 26

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:81/3908825
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司