• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bai, Z.P. (Bai, Z.P..) | Li, Y.F. (Li, Y.F..)

收录:

EI Scopus

摘要:

The prediction smoke back-layering length and critical velocity in the event of a fire in a utility tunnel are studied. In this paper, the method of numerical simulation is used to study the combustion characteristics of the cable tray in a utility tunnel. The prediction of smoke back-layering length is related to factors such as heat release rate, longitudinal ventilation velocity, and fire source location. The smoke back-layering length is determined by the temperature record. The temperature measurement is made by thermocouple tree in the utility tunnel. Results show that the dimensionless critical velocity has a certain influence on the dimensionless heat release rate in utility tunnel. The numerical simulation results show that there is an exponential relationship between the dimensionless smoke back-layering length with two fire locations (locations A and C) in the utility tunnel. This paper proposes a method for predicting the smoke back-layering length based on the correlation of numerical simulation data. In two fire locations (locations A and C), the numerical simulation data of the smoke back-layering length has a good correlation with the results of the Li model. The main contribution of this paper is to prevent the smoke propagation in utility tunnels and provide technical guidance. Therefore, this paper has certain guiding significance for the smoke propagation below the ceiling of the electric compartment in utility tunnel. © 2020, International Association of Engineers. All rights reserved.

关键词:

Fires Temperature measurement Numerical models Smoke Thermocouples Location Velocity Numerical methods Ventilation Forecasting

作者机构:

  • [ 1 ] [Bai, Z.P.]Department of College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, China
  • [ 2 ] [Li, Y.F.]Department of College of Architecture and Civil Engineering, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Engineering Letters

ISSN: 1816-093X

年份: 2020

期: 4

卷: 28

页码: 991-995

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:514/4964391
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司