• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ali, Saqib (Ali, Saqib.) | Li, Jianqiang (Li, Jianqiang.) | Pei, Yan (Pei, Yan.) | Rehman, Khalil Ur (Rehman, Khalil Ur.)

收录:

EI Scopus

摘要:

Segmentation of gliomas is a crucial step in brain tumor surgical planning, and it serves as the foundation for further diagnosis of brain tumors. Tumor borders are usually unclear, and a significant amount of heterogeneity in the structure, causing brain tumor segmentation a tough task. However, for tumor segmentation, approaches based on deep learning have shown promising results. This study develops a multi-module U-Net system that utilizes multiple U-Net modules to collect spatial detail at varying resolutions. We use various up-inception and down-inception modules to extract and exploit enough features. Experimental results show that the dice scores of 0.95, 0.90, 0.84, and 0.91, 0.84, 0.77 were achieved for the whole tumor, core tumor, and enhancing tumor, using the BraTS 2018 and local private dataset, respectively. When compared to cutting-edge methods, this study achieves competitive segmentation results. © 2022, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

关键词:

Medical imaging Tumors Diagnosis Brain Image segmentation Deep learning

作者机构:

  • [ 1 ] [Ali, Saqib]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Li, Jianqiang]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Pei, Yan]Computer Science Division, University of Aizu, Aizuwakamatsu; 965-8580, Japan
  • [ 4 ] [Rehman, Khalil Ur]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1865-0929

年份: 2022

卷: 1745 CCIS

页码: 57-69

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:179/4833452
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司