• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Hong-Gui (Han, Hong-Gui.) (学者:韩红桂) | Lin, Zheng-Lai (Lin, Zheng-Lai.) | Qiao, Jun-Fei (Qiao, Jun-Fei.) (学者:乔俊飞)

收录:

EI Scopus PKU CSCD

摘要:

In order to adjust the structure and parameter of a fuzzy neural network simultaneously, a growing fuzzy neural network based on the unscented Kalman filter(UKF) method is proposed. Firstly, the UKF method is used to adjust the parameters of the fuzzy neural network. Then, a growing mechanism, using the output intensity of hidden neurons, is designed for self-organizing the fuzzy rules, and the structure of fuzzy neural networks can grow in the learning process. Finally, the proposed growing fuzzy neural network is used to model a nonlinear system. The experimental results show that the proposed growing fuzzy neural network is able to adjust the structure and parameters simultaneously, as well as with suitable modeling accuracy. © 2017, Editorial Office of Control and Decision. All right reserved.

关键词:

Fuzzy filters Fuzzy inference Fuzzy logic Fuzzy neural networks Kalman filters Nonlinear systems

作者机构:

  • [ 1 ] [Han, Hong-Gui]College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Han, Hong-Gui]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Lin, Zheng-Lai]College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Lin, Zheng-Lai]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 5 ] [Qiao, Jun-Fei]College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Qiao, Jun-Fei]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China

通讯作者信息:

  • 韩红桂

    [han, hong-gui]college of electronic information & control engineering, beijing university of technology, beijing; 100124, china;;[han, hong-gui]beijing key laboratory of computational intelligence and intelligent system, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Control and Decision

ISSN: 1001-0920

年份: 2017

期: 12

卷: 32

页码: 2169-2175

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:166/3611460
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司