收录:
摘要:
The traditional damping models generally include such models as the viscous damping, the coulomb damping, the complex damping and the stress damping. These models cannot sufficiently reveal the rule and phenomenon how the damp varies with the damage evolution. It is assumed that the damping energy dissipation of the reinforced concrete structures mainly consists of the viscous damping and the residual stress damping, and the residual stress damping includes the bond stress between the reinforcement and the concrete and the friction stress of the concrete cracks. On the basis of this assumption, a combined damping model based on the residual stress is proposed. The dynamic equation of the structure containing viscous and coulomb damping is established, and the formula of the damping ratio with the development of damage is derived. The damping change regulation of the reinforced concrete structures under different damage states is analyzed. It is found that the damping ratio of different damage degree is remarkably affected by the ratio of the residual stress and the stiffness, and diverseparameters of the combined damping model are available and has better adaptability. Finally, the change of damping with the damage of reinforced concrete simply-supported beam is tested by the static damage experiment, and the mechanism of the change of the damping ratio with different damage is analyzed combined with numerical simulation. The results show that the combined damping model has a definite mechanical mechanism, and the phenomenon that the damping ratio of the reinforced concrete beam originally increases and subsequently decreases with the damage degree is accurately revealed. © 2017, Nanjing Univ. of Aeronautics an Astronautics. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: