• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang Penghui (Yang Penghui.) | Fu Hanguang (Fu Hanguang.) (学者:符寒光) | Li Guolu (Li Guolu.) | Liu Jinhai (Liu Jinhai.) | Zhao Xuebo (Zhao Xuebo.)

收录:

EI Scopus SCIE

摘要:

A new type heat treatment process comprising super-high temperature pretreatment and austempering treatment (S&A treatment) was used to process carbidic austempered ductile iron (CADI). The results showed that the netlike eutectic carbides were significantly reduced after super-high temperature pretreatment. Due to the increase in supercooling during super-high temperature pretreatment cooling, the inter-laminar spacing of pearlite was reduced from 300 nm to 100 nm. When the ductile iron with superfine pearlite was reheated, a large amount of Fe3C particles were retained inside the prior austenite grains. After austempering, a superfine ausferrite matrix with a length of 1-3 mu m and a thickness of 50 nm was obtained. The main reason for this refinement is the increased number of nucleation-sites for the austenite grains and the retardation-effect of Cr on their growth. TEM results indicated that a possible orientation relationship between bainitic ferrite with a cubic lattice and precipitated Fe3C particles with a orthorhombic lattice is (01 (1) over bar)(alpha-Fe)//(210)(Fe3C), and their boundaries are coherent boundaries. The CADI obtained by S&A treatment has an impact toughness 120% higher than the traditional CADI without sacrificing hardness, and has excellent wear resistance under high wear load. (c) 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

关键词:

CADI Impact toughness Precipitates Superfine ausferrite Super-high temperature pretreatment

作者机构:

  • [ 1 ] [Yang Penghui]Beijing Univ Technol, Sch Mat Sci & Engn, Minist Educ, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 2 ] [Fu Hanguang]Beijing Univ Technol, Sch Mat Sci & Engn, Minist Educ, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 3 ] [Li Guolu]Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin 300130, Peoples R China
  • [ 4 ] [Liu Jinhai]Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin 300130, Peoples R China
  • [ 5 ] [Zhao Xuebo]Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin 300130, Peoples R China

通讯作者信息:

  • 符寒光

    [Fu Hanguang]Beijing Univ Technol, Sch Mat Sci & Engn, 100 Pingle Garden, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

MATERIALS & DESIGN

ISSN: 0264-1275

年份: 2020

卷: 186

8 . 4 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:37

JCR分区:1

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:463/2899876
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司