• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, W. (Zhang, W..) (学者:张伟) | Wu, R. Q. (Wu, R. Q..) | Siriguleng, B. (Siriguleng, B..)

收录:

EI SCIE

摘要:

The asymptotic perturbation method is used to analyze the nonlinear vibrations and chaotic dynamics of a rotor-active magnetic bearing (AMB) system with 16-pole legs and the time-varying stiffness. Based on the expressions of the electromagnetic force resultants, the influences of some parameters, such as the cross-sectional area A alpha of one electromagnet and the number N of windings in each electromagnet coil, on the electromagnetic force resultants are considered for the rotor-AMB system with 16-pole legs. Based on the Newton law, the governing equation of motion for the rotor-AMB system with 16-pole legs is obtained and expressed as a two-degree-of-freedom system with the parametric excitation and the quadratic and cubic nonlinearities. According to the asymptotic perturbation method, the four-dimensional averaged equation of the rotor-AMB system is derived under the case of 1 : 1 internal resonance and 1 : 2 subharmonic resonances. Then, the frequency-response curves are employed to study the steady-state solutions of the modal amplitudes. From the analysis of the frequency responses, both the hardening-type nonlinearity and the softening-type nonlinearity are observed in the rotor-AMB system. Based on the numerical solutions of the averaged equation, the changed procedure of the nonlinear dynamic behaviors of the rotor-AMB system with the control parameter is described by the bifurcation diagram. From the numerical simulations, the periodic, quasiperiodic, and chaotic motions are observed in the rotor-active magnetic bearing (AMB) system with 16-pole legs, the time-varying stiffness, and the quadratic and cubic nonlinearities.

关键词:

作者机构:

  • [ 1 ] [Zhang, W.]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Wu, R. Q.]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, W.]Inner Mongolia Univ Technol, Dept Mech, Hohhot 010051, Peoples R China
  • [ 4 ] [Siriguleng, B.]Inner Mongolia Univ Technol, Dept Mech, Hohhot 010051, Peoples R China

通讯作者信息:

  • 张伟

    [Zhang, W.]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China;;[Zhang, W.]Inner Mongolia Univ Technol, Dept Mech, Hohhot 010051, Peoples R China;;[Siriguleng, B.]Inner Mongolia Univ Technol, Dept Mech, Hohhot 010051, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

SHOCK AND VIBRATION

ISSN: 1070-9622

年份: 2020

卷: 2020

1 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:28

JCR分区:3

被引次数:

WoS核心集被引频次: 25

SCOPUS被引频次: 26

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:462/2932892
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司